
Memristive Data Ranking
Ananth Krishna Prasad∗, Morteza Rezaalipour†, Masoud Dehyadegari† and Mahdi Nazm Bojnordi∗

∗University of Utah, †K.N. Toosi University of Technology
Email: ∗{ananth, bojnordi}@cs.utah.edu, †{amrezaalipour, dehyadegari}@kntu.ac.ir

Abstract—Sorting is a fundamental operation in many large-
scale data processing applications. In big data computing, sort-
ing imposes a massive requirement on the available memory
bandwidth because of its natural demand for pairwise com-
parison. This high bandwidth requirement often leads to a
significant degradation in performance and energy-efficiency.
Processing-in-memory has been examined as an effective solution
to the memory bandwidth problem for SIMD and data-parallel
operations, which does not necessarily solve the bandwidth
problem for pairwise comparison. This paper proposes a viable
hardware/software mechanism for performing large-scale data
ranking in memory with a bandwidth complexity of O(1). Large-
scale comparison that forms the core computation of sorting
algorithms is reformulated in terms of novel bit-level operations
within the physical memory arrays for in-situ ranking, thereby
eliminating the need for any pairwise comparison outside the
memory arrays. The proposed mechanism, called RIME, provides
an API library granting the user application sufficient control
over the fundamental operations for in-situ ranking, sorting, and
merging. Our simulation results on a set of high-performance
parallel sorting kernels indicate 12.4 − 50.7× throughput gains
for RIME. When used for ranking and sorting in a set of
database applications, graph analytics, and network processing,
RIME achieves more than 90% energy reduction and 2.3−43.6×
performance improvements.

I. INTRODUCTION

The continued growth in IoT, mobile devices, and cloud-
based services have led to the emergence of large datasets
and big data workloads. Analyzing, querying, and filtering
massive amounts of data in a structured manner becomes
increasingly hard. In these cases, a large amount of data often
require to be sorted, either because of dataset properties [1], or
real-time requests from web users [2], or algorithm features
[3]. Also, sorting data is often the key to enabling efficient
searching algorithms [4]. Data clustering, an important kernel
in data mining applications, depends heavily on sort and search
operations [5]. Therefore, sorting an array of numbers is an
active area of research and a vital operation in many applica-
tion domains such as image processing, database processing,
genome analysis, and text analysis [6].

Several sorting algorithms were invented in every decade to
be well adapted to computer architecture and distributions of
data, such as radixsort [7], mergesort [8], and quicksort [9].
Further research has been conducted to identify efficient sort-
ing algorithms using hardware accelerators [10], multiple cores
by exploiting SIMD instructions [11, 12], GPUs [13], and
ASIC [14]. With the increase in the computational capability
of processors and GPUs by enabling more cores and threads,
the demand for memory bandwidth increases proportionally
[15]. For large datasets of size magnitudes larger than the

on-chip cache capacity, the demand for high memory band-
width results in sorting performance being bottlenecked by
the limited off-chip memory bandwidth. Large scale memory
management [16] and in-memory databases [17] have been
recently explored as a promising solution to the data movement
and bandwidth challenges. The efficiency of these techniques
primarily depends on minimizing data movement between
the processor cores and off-chip memory using a hierarchy
of memories, non-uniform access to memory, transactional
memories, and non-volatile technologies. Nevertheless, such
optimizations do not eliminate, but rather mitigate the extent
of data accesses to perform sorting on the processing core.

The recent advent of emerging memory interfaces [18, 19]
and cell technologies [20, 21] has enabled in-memory com-
putation with large-scale data parallel operations, such as
bitwise XOR. Prior work on processing in memory (PIM)
has shown various applications ranging from combinatorial
optimization [22, 23] and neural network computation [24–
26] to graph analytics [27]. The existing PIM solutions mostly
focus on accelerating matrix/vector operations inside memory
arrays or utilizing high bandwidth interfaces for near data
computation. Instead, RIME proposes an in-situ approach for
memristive ranking-in-memory using a HW/SW co-design that
minimizes the bandwidth requirements of sort algorithms. The
main contributions of this paper are as follows. (1) Large-scale
sorting workloads are characterized in terms of bandwidth
and throughput requirements. The primary reason for poor
performance of sorting at low bandwidths is identified. (2)
A novel memory system architecture is designed to enable in-
memory min/max computation using a large-scale massively
parallel bitwise algorithm. (3) The necessary driver support
and userspace API are provided to enable fine-grained control
over the proposed system for efficient in-situ ranking and
ordinary memory operations. (4) Detailed evaluations of the
proposed architecture at the system and circuit levels are pro-
vided, which indicate significant performance improvements
and energy savings over the existing systems.

II. BACKGROUND AND MOTIVATIONS

A. Applications of Sorting

Sorting is a fundamental operation in database applications.
For example, sorting is very common in query retrieval to pre-
pare the query results in a particular order by using OrderBy
clause. In addition, sorting may be necessary in several join
operations such as sort-merge join algorithm. It serves in in-
dex creation, user-requested output sorting, ranking, duplicate
removal, and grouping operations [28]. Numerous techniques

have been proposed ro realize efficient sorting based on multi-
core processors, GPUs, and SIMD architectures [4].

MapReduce is used to perform massive data sorting in
distributed system. In particular, Shuffle is an important part
of MapReduce that performs sorting and transferring outputs
of the maps to reducers [29]. The execution time of algo-
rithms such as Kruskal is dominated by sorting. Prim’s string
processing and Dijkstra’s algorithms are based on the priority
queue, which relies on sorting and ranking data in a queue.
Many other applications such as numerical computations,
combinatorial search, operations research, and commercial
computing are often based on sorting [30]. Moreover, sort-
ing the retrieval results from PageRank, HillTop, and HITS
(Hypertext Induced Topic Search) in a reasonable time is a
significant challenge [31]. Not only sorting integer values is
important but also several applications need sorting real-valued
data, which is not as simple as integer values. For example,
Kim et al. [32] exploits integer arithmetic on floating-point
data to reduce the execution time.

B. Sorting Algorithms

Quicksort. Quicksort was first introduced by Sir C. A. R.
Hoare in 1961 [33]. Quicksort is based on the divide-and-
conquer paradigm that resolves a complex problem by con-
stantly dividing it into simpler subproblems until it reaches a
point where the solution to the subproblems becomes trivial.
The algorithm starts with a Partition phase in which a bound
element (or a pivot) is selected from the given array as a divid-
ing line for partitioning it into two smaller segments (or sub-
arrays). At the end of the Partition phase, if the size of sub-
arrays is less than a cut-off amount, i.e., the solution becomes
trivial, the sub-arrays may then be sorted by known methods;
or even by employing programs specialized for sorting arrays
containing less than cut-off elements. Conversely, if the sub-
arrays are fairly large, the partitioning process continues for
further division of the sub-arrays into even smaller ones. The
time complexity of Quicksort is reported to be of the order
of O(n2) and O(n log n), for the worst and average cases,
respectively [34].

Mergesort. Mergesort was suggested by John von Neuman
as early as 1945 [34]. Similar to Quicksort, Mergesort also
employs the divide-and-conquer paradigm, and it recursively
sorts a given array of elements. As the name of the algorithm
represents, Mergesort consists of a merge algorithm and re-
cursive calls. The merge algorithm takes two or more non-
empty sorted arrays and outputs a final array that is also
sorted. Generally, Mergesort first divides the input array into
multiple sub-arrays, each containing only a single element, by
recursive calls; a subarray that contains only a single element
is considered to be sorted. Then, it repeatedly merges the
subarrays until there remains only one array, which is the
sorted output array [34].

Radixsort. Radixsort method employs a different scheme
compared to the previous sorting algorithms as it looks through
the individual digits of elements to perform a digit-inspection

process. For d-digit elements, starting from the most signif-
icant digit (MSD) to the least significant digit (LSD), the
algorithm sorts the elements, considering only one digit at
a time, in a way that all the elements that have smaller digits
appear on the left-hand side of elements with larger digits.
By iterating this process from d-1 to 0, the input array will
be sorted. Radixsort may also be applied in the opposite digit
direction (i.e., from LSD to MSD) [34].

Heapsort. Heapsort is based on the heap data structure, which
is a complete binary tree of data points. The maximum or
minimum value is always located at the root of the heap tree.
During each iteration of the algorithm, Heapsort removes the
root node from the array and substitue the root node with the
last element of the array and reheap the array [35]. The time
complexity of Heapsort is O(n log n).

C. Design Challenges and Opportunities

1) Memory Bandwidth Requirements: First, not all sort
algorithms exhibit the same bandwidth requirements. Figure 1
shows the number of accesses served by a memory system
below the on-die cache for Mergesort (M/S), Quicksort (Q/S),
and Radixsort (R/S). We consider two memory configurations
for this analysis: one with an unlimited bandwidth and the
other with an off-chip memory interface [36].1 Increasing the
workload size on the bandwidth-unlimited system results in a
higher number of memory accesses (Figure 1(a)), which may
be influenced by the number of processor cores (Figure 1(b)).
In real memory systems, however, the bandwidth is limited.
Figure 1 (c) shows the sustained memory bandwidth is more
restricted as the number of cores varies from 1 to 64.

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 0

 1
0

 2
0

 3
0

 4
0

 5
0

 6
0

 7
0

(a)

M
e
m

o
ry

 A
c
c
e
s
s
e
s
 (

M
il
li
o

n
s
)

Data Size (Million Keys)

16 Cores

M/S

Q/S

R/S

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0

 1
0

 2
0

 3
0

 4
0

 5
0

 6
0

 7
0

(b)

M
e
m

o
ry

 A
c
c
e
s
s
e
s
 (

M
il
li
o

n
s
)

Number of Cores

65M Keys

M/S

Q/S

R/S

 300

 350

 400

 450

 500

 550

 600

 650

 0

 1
0

 2
0

 3
0

 4
0

 5
0

 6
0

 7
0

(c)

M
e
m

o
ry

 B
a
n

d
w

id
th

 (
M

B
p

s
)

Number of Cores

65M Keys

M/S

Q/S

R/S

Fig. 1. Bandwidth requirements for sort algorithms.

Second, the performance of sort algorithms is sensitive
to the available memory bandwidth. Figure 2 shows the
throughput of the sort algorithms, in terms of million keys
per second (MKps), on three systems with different available
bandwidths. For this analysis, in addition to the unlimited and
off-chip bandwidths, we consider a high bandwidth memory
system with an in-package DRAM [37]. In an ideal memory
system with unlimited bandwidth (a), R/S outperforms both
Q/S and M/S at the cost of exerting significant data movement
on the memory interface. This superiority, however, is taken by
Q/S in the realistic memory systems with limited bandwidth–
i.e., the in-package (b) and off-chip (c) memories.

1Section VI provides the detailed system configuration.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0

 1
0

 2
0

 3
0

 4
0

 5
0

 6
0

 7
0

(a)

T
h

ro
u

g
h

p
u

t
(M

K
p

s
)

Data Size (Million Keys)

Unlimited Bandwidth

M/S
Q/S

R/S

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0

 1
0

 2
0

 3
0

 4
0

 5
0

 6
0

 7
0

(b)

T
h

ro
u

g
h

p
u

t
(M

K
p

s
)

Data Size (Million Keys)

In-Package (HBM)

M/S
Q/S

R/S

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0

 1
0

 2
0

 3
0

 4
0

 5
0

 6
0

 7
0

(c)

T
h

ro
u

g
h

p
u

t
(M

K
p

s
)

Data Size (Million Keys)

Off-Chip (DDR4)

M/S
Q/S

R/S

Fig. 2. Impact of available bandwidth on performance.

2) Opportunities and Potentials: The above analyses on
sorting algorithms indicate that (1) the bandwidth require-
ment scales linearly with the size of working set and (2)
the throughput of sorting is limited by bandwidth. Similar
observations have been made by the prior work on StreamBox-
HBM [38], where a sort-merge based algorithm for streaming
computation outperforms hash-join based approaches for in-
package memories. The prior work shows that throughput of
GroupBy, one of the key kernels in streaming computation,
increases linearly with increasing the number of cores for
HBM, while it stagnates beyond 16-cores for DRAM. Thus, if
there is way to remove this bandwidth bottleneck for sorting,
performance can be massively improved.

One of the main reasons sorting requires a large bandwidth
lies at the heart of the algorithms (i.e., comparison). In
naive terms, worst-case sorting requires all possible pairwise
comparison of values. Even though more sophisticated algo-
rithms such as Quicksort, Radixsort, and Heapsort improve
the bandwidth efficiency, still they don’t solve the underlying
issue, which is access to pairs of values in memory. In contrast,
RIME enables large-scale in-situ bitwise comparison that
massively improves the bandwidth efficiency by eliminating
unnecessary data movement on the memory interface. Given
the immense applications large-scale data sorting has, this
can potentially massively accelerate sorting kernels as part of
large-scale data processing applications.

D. Memristive Array Structure

Memristive technology has been promoted as an
alternative to the conventional memories due to their
scalability, non-volatility, and being free of leakage
power. Moreover, they have shown unique capabilities
for efficient in-memory processing. In particular, resistive
RAM (RRAM) is one of the most promising memristive
devices under commercial development that shows great
potential for building main memory systems [21].

wordline
bitline

selectline

1T-1R Cell

memristive
element

Fig. 3. The 1T-1R memory cell [39]
used for RIME.

Numerous cell architectures
have been proposed in
the literature that optimize
RRAM for better reliability,
density, and computational
capabilities. 1R crosspoints
are denser, but lacking isolated access to individual rows
and columns [40]. As the proposed in-situ approach requires

isolated column access a 1T1R memory cell (Figure 3) is
preferred over the 1R crosspoint.

III. DESIGN OVERVIEW

A. In-Memory Min/Max Computation

Inspired by the prior work on bit-serial median filters [41,
42], we design a new algorithm for computing the minimum
(or maximum) of any N numbers in k serial steps, where
k is the number of bits used for representing each number.
The proposed algorithm is applicable to signed/unsigned fixed-
point and floating-point number formats.

1) Unsigned Fixed-Point Numbers: We consider α integer
bits and β fraction bits to represent unsigned fixed-point
numbers. Every k-bit number is represented in the form of
bα−1· · ·b0•b−1· · ·b−β , where bis are the binary digits and
k = α + β. (Typically, β is set to 0 for representing pure
integer numbers.) The value of each number is computed
by

∑α−1
i=−β 2

ibi. Therefore, a number with more leading 0s
produces a smaller value; for example, 0001.11 is less than
0010.00. We employ this simple principle to design a bit-serial
algorithm for finding the minimum (or maximum) of multiple
numbers in a set. As shown in Algorithm 1, starting from the
most significant bit position (i.e., k − 1), we follow a k-step
algorithm to examine the binary values of all bit positions
(i.e., pos). At every step, some of the non-minimum (or non-
maximum) values may be removed from the set. First, we
search for 1 at the current bit position (pos) to form a selection
of matching numbers (sel). The selected numbers are removed
from the set only if the set and sel are not equal. As a result,
all the final remaining numbers in the set have the minimum
value.

Algorithm 1 Find the minimum of unsigned fixed-points
1: set← {all numbers}
2: for pos in (k − 1, · · · , 1, 0) do
3: sel← ∅
4: for all num ∈ set do
5: if numpos = 1 then sel← sel ∪ {num}
6: end if
7: end for
8: if sel 6=set then set← set− sel
9: end if

10: end for

Figure 4 shows how the proposed algorithm finds the
minimum of 5 unsigned fixed-point numbers with α = 3
and β = 2. First, the most significant bit of all numbers are
compared with 1 and the matching numbers (i.e., 4.00 and
6.50) are excluded from the set (Step 1). We then compare
the second most significant bit of the remaining numbers with
1. As we find no matches, none of the numbers is removed
from the set during Step 2. We repeat this process for the next
bit position during Step 3. As all the remaining numbers have
a matching 1 in the third bit position, none of the numbers
should be excluded from the set. During Steps 4 and 5, the next
matching numbers, respectively 1.75 and 1.25, are excluded

from the set. Finally, the remaining number in the set (i.e.,
1.00) represents the minimum value of the given numbers.

4.00 : 1 0 0 0 0
1.75 : 0 0 1 1 1
1.25 : 0 0 1 0 1
1.00 : 0 0 1 0 0
6.50 : 1 1 0 1 0

4.00 : 1 0 0 0 0
1.75 : 0 0 1 1 1
1.25 : 0 0 1 0 1
1.00 : 0 0 1 0 0
6.50 : 1 1 0 1 0

4.00 : 1 0 0 0 0
1.75 : 0 0 1 1 1
1.25 : 0 0 1 0 1
1.00 : 0 0 1 0 0
6.50 : 1 1 0 1 0

(a) Step 1 (b) Step 2 (c) Step 3

4.00 : 1 0 0 0 0
1.75 : 0 0 1 1 1
1.25 : 0 0 1 0 1
1.00 : 0 0 1 0 0
6.50 : 1 1 0 1 0

4.00 : 1 0 0 0 0
1.75 : 0 0 1 1 1
1.25 : 0 0 1 0 1
1.00 : 0 0 1 0 0
6.50 : 1 1 0 1 0

(d) Step 4

(e) Step 5 (f) Final

4.00 : 1 0 0 0 0
1.75 : 0 0 1 1 1
1.25 : 0 0 1 0 1
1.00 : 0 0 1 0 0
6.50 : 1 1 0 1 0

Fig. 4. Illustrative example of finding the minimum of 5 unsigned fixed-point
numbers.

2) Signed Fixed-Point Numbers: We use the two’s com-
plement format for representing signed fixed-point numbers
in the form of sbα−2· · ·b0•b−1· · ·b−β , where s is the sign
bit. Every signed fixed-point value may be computed by
−2α−1s+

∑α−2
i=−β 2

ibi. Similar to unsigned values, having 0s
in more significant bis results in a smaller value. However,
a 1 in the sign bit position makes the value negative. To
support signed numbers, we change Algorithm 1 to search
for matching 0s (instead of 1s) in the first iteration of the
loop (pos = k − 1). Therefore, the proposed algorithm can
exclude all the positive values from the set during Step 1 if a
mix of positive and negative numbers is given. If only positive
numbers are present, corresponding to the case where all bit-
values in the first iteration of the loop being zero, the operation
proceeds to search for matching 0s in the succeeding iterations
to find the minimum magnitude

3) Floating-Point Numbers: The IEEE standard for
floating-point arithmetic (IEEE 754) proposes a three-segment
layout for real-valued numbers comprising one sign bit (s),
a multi-bit exponent (e), and a multi-bit fraction (f). Ev-
ery floating-point value may be computed by (−1)s×(1 +
f)×2e−b, where b is a positive bias added to the exponent.

Similar to signed fixed-point numbers, at the sign bit
position, the algorithm searches for 0s to remove from the
set. A constant offset is added to the exponent bits, but
that doesn’t change the monotonic relationship between the
actual exponent and the magnitude of the value represented in
the exponent bits. This makes it such that there is virtually
no difference in the algorithm between signed fixed-point
numbers and floating point numbers.

Figure 5 shows an example for finding the minimum of 3
numbers in a hypothetical 8-bit floating-point format similiar
to IEEE 754, with 4 mantissa bits and 3 exponent bits. At
the first step, the sign bit is checked. At the second step,
given that all values in the first (sign) column were not zero,
the algorithm searches for 1s to find the number with the
maximum possible magnitude. After step 4, only one selected
value remains, and that is the minimum value.

B. Rank/Sort/Merge Operation

In-memory min/max computation can significantly allevi-
ate the bandwidth costs of large-scale ranking, sorting, and

 18.00 : 0 1 1 1 0 0 0 1
 -1.625 : 1 0 1 1 1 0 1 0
 -0.75 : 1 0 1 0 1 0 0 0

(a) Step 1

 18.00 : 0 1 1 1 0 0 0 1
 -1.625 : 1 0 1 1 1 0 1 0
 -0.75 : 1 0 1 0 1 0 0 0

(b) Step 2

 18.00 : 0 1 1 1 0 0 0 1
 -1.625 : 1 0 1 1 1 0 1 0
 -0.75 : 1 0 1 0 1 0 0 0

(c) Step 3

 18.00 : 0 1 1 1 0 0 0 1
 -1.625 : 1 0 1 1 1 0 1 0
 -0.75 : 1 0 1 0 1 0 0 0

(d) Step 4

 18.00 : 0 1 1 1 0 0 0 1
 -1.625 : 1 0 1 1 1 0 1 0
 -0.75 : 1 0 1 0 1 0 0 0

(e) Final

Fig. 5. Illustrative example of finding the minimum of 3 floating-point
numbers.

merging operations.
1) Sorting: As established before, conventional sort algo-

rithms require a significant memory bandwidth due to their
complex access patterns for comparing pairs of data points.
Depending on the type of algorithm, the complexity of mem-
ory bandwidth for sorting N data points may vary between
O(NlogN) and O(N2) for large data sets [43].2 Our proposed
hardware/software approach lowers the bandwidth complexity
of sort operations to O(N) eliminating the unnecessary data
movement for finding min/max of given data points. From
the software point of view, the proposed sort operation is
carried out similar to reading data from an array of values.
For a specific data range in memory, every access can provide
the next minimum value of the array. Therefore, repeating
this process N times results in an ordered stream of data
from memory to the processor. First, the in-memory min/max
computer is initialized for a new data range in the memory. On
every sort access, the next minimum value of the data range
is computed and sent to the processor. Also, the newly found
data is flagged for exclusion from the data range for the next
sort accesses. The exclusion flags remain until the hardware
is initialized for a new sort operation or the data memory is
released through APIs provided (explained in Section V).

2) Ranking: Similar to sorting, conventional data ranking
algorithms consume a significant memory bandwidth. A nat-
ural way of finding the kth ordered item of N numbers is to
repeat a sort algorithm until reaching the kth min/max of the
numbers. This approach may result in a bandwidth complexity
of O(kN). Using the proposed in-memory min/max finder,
we can decrease the bandwidth costs of finding the kth
ordered value in a data range to k accesses, which indicates a
bandwidth complexity of O(k). For a given k, the in-memory
hardware repeats min/max computation for k iterations until
the desired value is found.

3) Merging: A merge operation refers to combining two
(or more) data sets into a single ordered set of data. The
resultant set may include all members of the input sets or
only data points that exists in all input sets (a.k.a., merge-
join in databases). Having a sorting algorithm at its heart,
the bandwidth complexity of merging is the same as that of
sorting. The conventional merge operations require a band-
width complexity as low as O(NlogN), where N is the size
of the resultant merged data; whereas, our proposed hard-

2The memory bandwidth complexity significantly reduces for small data
sets that entirely or partially fit in the on-chip cache.

ware/software solution reduces this complexity down to O(N).
To support fast merge operations, the in-memory hardware
implements concurrent min/max computation on multiple data
ranges. Figure 6 shows how to merge two data sets (A and B)
into a stream of ordered numbers. After initializing the data
ranges, software reads the first minimum value from each data
sets (i.e., 1 and 4). The smaller min value is 1 from A, which
is selected for the output stream. As a replacement for this
value, the next min value is read from A and the min selection
process repeats until all the values from both sets are accessed.
In the case of a merge-join operation, the output stream will
only include the min values that exist in both sets (i.e., 5).

5, 1, 3, 7, 10

4, 8, 5
1 3 4 5 5 7 8 10

join

merge

A

B

Fig. 6. Illustrative example of merging two data sets.

IV. PROPOSED ARCHITECTURE

Integrating a min/max compute logic in memory chips
may introduce significant overheads in terms of performance,
energy, and memory capacity. To minimize the overheads, we
propose minimal changes to the periphery and organization of
conventional memristive arrays for in-situ value ranking.

A. Memristive In-Situ Ranking

As explained in Section III-A, the key operation for bit-
serial min/max computation is a repetitive search for bit value
(1 or 0) within individual columns of a data array. At every
step, the outcome of the search is a match vector indicating
which rows of the array should be excluded from the data
set. As a result, the memory array needs to support two
new operations for bitwise column search and selective row
exclusion. To enable these new operations, we choose the
conventional 1T1R structure explained in Section II-D. As
shown in Figure 7, we propose extra control mechanism at
each memristive array to enable wordline activation selectively
and match vector generation on the selectlines, iteratively.

R
ow

 D
ec

od
er

H0

L1

0

Bit Value

Match Vector

Select
Vector

Additional Control 2D Memristive Array

A
ll

0
o

r
1

 lo
g

ic

1

1

0

load

Current Column
bitline

Sensing circuit Driving circuit

Fig. 7. Enabling selective wordline activation and match vector generation.

1) Bitwise Column Search: Every column search is per-
formed on a set of selected cells within a particular column
of the array. A select vector, connected to all the wordlines,
determines the selected cells for each column search operation.
Initially, all memristive rows containing the data points are
selected by the select vector (Section IV-B2). The data points
are represented with multi-bit values stored in single-level

memory cells, where each cell represents a single bit of a
value. Therefore, each column of the array includes a bit value
from multiple data points. For every bitwise search, the bitline
driver of the current column is first enabled to make a read
current flow through the bitline. The bitline is connected to the
binary cells that represent 0 and 1 using high (H) and low (L)
resistance states, respectively. Ideally, the bitline currents reach
the selectlines (recall Section II-D) only after passing through
the selected cells that represent 1 with their low resistance
states. In practice, however, the cells with high resistance state
pass current too. But the significance of current flowing though
each memristive cells is inversely proportional to its resistive
state. To make a near-ideal situation for bitwise search, we
choose memristive devices that provide a large dynamic range
of resistance states (i.e., RH is much bigger than RL). By
sensing the selectlines, we perform a column read at the array
periphery. As shown in Figure 7, the result undergoes a
bitwise XNOR with the reference bit value, a 1-bit search
key, to generate a match vector.

2) Selective Row Exclusion: Row exclusion is performed
through loading the generated match vector into the select
vector, where more 1s may be turned into 0s. Therefore, we
reduce the number of selected rows for the next iteration of
bit-serial min/max computation. To ensure only non-minimal
values are excluded from the data set (Section III-A), the newly
generated match vector is only loaded into the select vector
if at least one of the selected cells differs from the others. As
shown in Figure 7, the All 0 or 1 Logic block generates the
load signal for the select vector latches. At the end of each
column operation, the contents of the select vector are updated
only if the load signal is driven high.

B. Memory Organization

1) Mat Architecture: One major component of the addi-
tional circuit for computing min/max within memory arrays
is the sensing circuit at each selectline for producing the
match vector. In a conventional memristive array, the sensing
circuits are connected to the bitlines for reading a row of the
array, whereas the proposed column search operation needs
the sensing circuits at the selectlines. We propose a physical
structure for the memristive arrays that enables sharing the
sensing circuits between read and column search operations.
Figure 8 shows how every four arrays within a mat share the
sensing and driving circuits for row read, column search, and
row write operations. At the center of each mat, a controller is
employed to operate the sense amps and drivers appropriately
for the received read, write, and column search commands. All
four memristive arrays are active during each mat command
to perform a bit parallel access. The outcome of each column
search is a binary signal indicating if at least one of the
mat arrays requires a row exclusion. This signal is then sent
upstream to the chip controller for further process.

2) Chip Organization: Building upon the proposed mat
structure, we design a memristive chip capable of storing
data points and performing in-situ min/max computation.
Every chip comprises a controller and multiple banks that are

Sense / Drive
R

o
w

 D
ec

o
d

e

S
e

n
se

 /
D

ri
v

e

Row Decode

Sense / Drive

R
o

w
 D

ec
o

d
e

S
en

se / D
rive

Row Decode

Mat
Control

logic

(a) Row Read

Sense / Drive

R
o

w
 D

ec
o

d
e

S
e

n
se

 /
D

ri
v

e

Row Decode

Sense / Drive

R
o

w
 D

ec
o

d
e

S
en

s
e / D

rive

Row Decode

Mat
Control

logic

Sense / Drive

R
o

w
 D

ec
o

d
e

S
en

s
e

/
D

ri
v

e

Row Decode

Sense / Drive

R
o

w
 D

ec
o

d
e

S
en

se / D
rive

Row Decode

Mat
Control

logic

(b) Column Search (c) Row Write

Fig. 8. Sharing sense and drive circuits for row read (a), column search (b),
and row write (c) operations.

connected using a data/index H-tree. The banks are further
divided into subbanks, which are similarly connected using an
internal data/index H-tree. Each subbank comprises multiple
mats and a selector to keep only one active mat per access.

Multi-Mat Management. Each mat is designed to compute
the min/max value of the data points independently. Though,
not all data may fit in a single mat. Therefore, a multi-mat
management is necessary to enable computing the min/max
value of larger data sets. Along these lines, we design a
special data/index tree that transfers data and address in
both directions between the chip controller and mats. (In the
conventional memory architecture, interconnection trees are
typically used for sending address and control in one direction
only, from the controller to memory arrays.) This capability
is necessary for two reasons: (1) the memory location of
the result is needed after every min/max computation and
(2) a global knowledge about all data points is necessary to
accurately perform a column exclusion across multiple mats.
Figure 9 shows an example that needs global knowledge for
a multi-mat exclusion. A column search command is sent
to 3 mats for finding 1s at the second most significant bit
of all the data points. The local search results are zero, all,
and one matches in Mats 0, 1, and 2 respectively. Following
the local mat computation steps, Mats 0 and 1 should not
exclude any data points due to having zero and all matches.
This, however, results in not excluding the numbers in Mat 1,
which is wrong. Instead, in a multi-mat row exclusion, all 3
mats need to be checked for the row exclusion needs. Each
mat, after comparison, returns 2 signals to the controller, one
value being the output of the “all 0 or all 1” logic, and the
other one indicating if there was a 1 in the column. In the
example case, the mat returns 00, 01 and 10 to the controller
for mats 0, 1, and 2 respectively. Based on this, the controller
decides which rows to exclude in computation. To realize this
mechanism efficiently, we use a specialized data/index tree
that ORes all the exclusion signals from the mats to signal the
chip controller for a required update to the select vectors.

0.00 : 0 0 0 0 0
1.75 : 0 0 1 1 1
1.25 : 0 0 1 0 1
1.00 : 0 0 1 0 0
1.75 : 0 0 0 1 1

2.00 : 0 1 0 0 0
3.75 : 0 1 1 1 1
3.50 : 0 1 1 1 0
3.25 : 0 1 1 0 1
2.50 : 0 1 0 1 0

0.50 : 0 0 0 1 0
1.75 : 0 0 1 1 1
1.25 : 0 0 1 0 1
1.00 : 0 0 1 0 0
2.50 : 0 1 0 1 0

Mat 0 Mat 1 Mat 2

Fig. 9. Multi-mat row exclusion.

Tree-based Index Computation. Upon completing a min/max
operation, which finds the global min/max output across the
span of selected mats, the data/index tree is expected to
compute the memory address of the output. We design the
data/index tree to act as a priority encoder that selects only
one min/max value per bitwise column search. The outcome of
each min/max computation is a multi-bit index progressively
produced in the data/index tree and sent upstream from the ar-
rays. Each bit of the index is generated by one of the tree nodes
along the path. Figure 10 shows an example index generation
for 16 arrays across 4 memristive mats, where arrays 2, 7, and
12 contain the min/max value. Each mat generates a binary
signal (i.e., E) indicating if it contains the min/max value3

and an initial index (i.e., A) representing which array/row has
the min/max value.4 At every node of the tree, Ai and Ei
signals that form the two children are combined to generate An
and En. En is a binary signal computed by ORing the same
signals produced by the children. An is, however, a multi-bit
value produced through concatenating a most significant bit to
a selected index from the children. A0 is selected if E0 is 1;
otherwise, we choose A1. The additional bit is computed by
E0∧E1.

10 11
8 9

2 3
0 1

6 7
4 5

14 15
12 13

110 111

1010

10010

1 0

A0

A1E0
E1

En
An

0xx111 100

1100

Fig. 10. Calculating the address of the minimum value in H-trees.

The output of index-reduction per column-wise computation
is sent to the chip controller, which performs per-mat global
select vector update. The process continues till either we reach
LSB or only 1 selected value is left across all selected mats.
Once we reach LSB, and multiple selected values are left, all
selected values are the same minimum value in the dataset.
The output of the index reduction tree at this stage would
correspond to the array with the lowest address having the
mimimum value which ensures stable sort of data.

10 11
8 9

2 3
0 1

6 7
4 5

14 15
12 13

101

0101

01

10 11
8 9

2 3
0 1

6 7
4 5

14 15
12 13

1010

10

010

Begin (5) End (10)
begin

address

end
enable

Fig. 11. Initializing the select vectors via H-trees.

Select Vector Initialization. To make use of the proposed in-
situ accelerator, it is necessary to initialize the select vector
of all memristive arrays containing the data points prior to
the iterative Min/Max computation. We allow the application
to determine an address range for every initialization at the
software level (Section V). The process is then completed in
hardware by sending the begin and end of the address range

3The exclusion signal is reused for this purpose.
4Priority is always given to the smaller indices.

to the data/index tree. From root to leaves, the begin and end
exclude all tree branches with addresses respectively below
and above the address range. At the memristive arrays of the
remaining branches, the select bit of each row is set to 1 if it
is within the range; otherwise, it is set to 0. Figure 11 shows
how the begin and end signals, specifying an address range
from 5 to 10, are sent to the memory arrays. Every node of
the tree relays signals to one or both of its children based a
certain address bit. This way, we use a fast and efficient way
for initializing select bits prior to in-situ computation.

V. SOFTWARE-HARDWARE INTERFACE

In this paper, we use a DDR4 [36] interface to enable
fast and efficient byte-addressable communication between
software and the proposed accelerator. Depending on the
application requirements, modules of the proposed memristive
architecture may be included in the system for storage and in-
memory data ranking purposes. A small fraction of the address
space visible to software within every chip is mapped to an
internal RAM array, and is used for implementing the data
buffers and the configuration parameters. Software configures
the on-chip data layout and initiates the optimization by
writing to a memory mapped control register. Both memory
configuration and data transfer accesses are performed through
ordinary DDR4 reads and writes. This is made possible
by making all accesses to the accelerator in-order strong-
uncacheable.

DIMM Organization. To support large-scale data ranking
problems whose working set does not fit within a single chip, it
is possible to interconnect multiple RIME chips under a dual
in-line memory module (DIMM) [44]. Moreover, a system
may include multiple DIMMs for larger data. Each DIMM is
configured to be either used in the RIME mode or normal
storage mode, decided at the system boot time. Runtime
reconfigurability between the RIME and normal storage modes
is not allowed owing to constraints imposed by the tree-based
index reduction architecture (more details are provided in
Section V). Each DIMM is equipped with control registers,
data buffers, and a controller. The controller receives the
DDR4 commands, data, and address bits from the external
interface, and orchestrates the necessary data movement and
computation among all of the chips on the DIMM.

Software Support. The proposed system provides a userspace
API library for efficient utilization of the in-memory process-
ing capabilities by the user. The API enables applications to
(1) allocate memory in the accelerator, (2) configure hardware
prior to each computation, and (3) compute the min/max of
the dataset. Any allocated memory in the accelerator may be
used as normal with load and store instructions, within the
constraints imposed by the tree based index reduction method.

The various functions offered as part of the RIME API,
along with usage, are shown as part of an example code snippet
in Figure 12. We design rime_init(), rime_min(), and
rime_max() as part of the API to initialize the hardware
and compute the minimum and maximum values, respectively.

The 3rd argument of rime_init() function call specifies
the data type stored in the memory. rime_min() and
rime_max() have an argument that takes a pointer to the tar-
get sorted array. The main operation of rime_init() is con-
figuring the data/index tree and setting the operational mode of
the chip controller. Also, rime_init() allows for defining
a sub-region within a region defined by rime_malloc()
for min/max operation through appropriate arguments. This
capability enables user flexibility in controlling the ranges of
data in consideration for specific operations.

// Example: find 100 min values within 2GB of data
start_addr = 0x3000FFFF;
end_addr = 0xB000FFFF;
int sorted_list[100];

rime_malloc(start_addr, end_addr);

rime_init(start_addr, end_addr, type);

for(int i = 0; i < 100; i++) {

 rime_min(start_addr, end_addr, i,sorted_list);

 //rime_max(start_addr, end_addr, i,sorted_list);

}
//sorted_list has the 100 least values in sorted order

rime_free(start_addr, end_addr);

Directs the system to allocate contiguous
memory in a RIME defined region.

Directs the system to deallocate contiguous
memory in a RIME defined region.

Initializes a previously allocated region or
sub-region within the allocated region for a
new sort/rank/merge operation.

Performs the computation for finding the
minimum value within a region/sub-region
specified by rime_init

Performs the computation for finding the
maximum value within a region/sub-region
specified by rime_init

Fig. 12. Example code snippet for forming a sorted list.

Memory Allocation for RIME. The tree-based reduction
connects multiple physically contiguous mats in a sub-bank
(Section IV-B2). This makes it necessary that large chunks of
contiguous virtual memory be allocated to contiguous mats of
physical memory to efficiently utilize the tree-based reduction
method. Moreover, reservation of such virtual pages onto a
contiguous physical space on demand could become impossi-
ble due to physical memory fragmentation. This necessitates
that there exist no fragmented physical region allocation to
virtual space when rime_malloc is called. RIME ensures
this requirement through a driver that avoids fragmentation
prone allocation on the RIME defined address spaces. The
driver has tunable parameters to specify the number of pages
that should be reserved on startup during an mmap call, and
the number of additional pages to reserve when the initially
reserved block gets full (similar to many malloc implemen-
tations). When the available reserved blocks are all taken,
the driver reserves additional contiguous physical memory and
expands the existing allocated memory region.

A

B

C

Unallocated

(b) RIME(a) Conventional

Fig. 13. Physical page allocation for malloc in the normal storage mode (a)
and RIME defined DIMMs (b).

Such a difference in memory allocation between the RIME
defined and normal storage regions is highlighted in Figure 13.
Each small square in the figure denotes a physical page.
There are three instances of malloc calls (A, B and C),
each of different size, within a region reserved by mmap
for the normal storage mode (a) and the contiguous RIME

mode (b). In the conventional case of memory allocation, a
virtually contiguous address space of multiple pages may not
be mapped to physically noncontiguous pages. In such a case,
it is highly inefficient to perform RIME operations because the
system cannot exploit its reduction tree to efficiently compute
the minimum value index for every column-wise comparison.
In the RIME defined regions, physical pages of each malloc
are contiguous, thereby utilizing the tree reduction, efficiently.

One drawback of the contiguous physical page allocation
is that if the size of rime_malloc request exceeds the size
of any physically unallocated contiguous space in the RIME
region, memory allocation for that malloc is not possible.
This is accounted for in the rime_malloc implementation,
which returns a null pointer in such cases. Therefore, the user
can try using rime_free to free up unnecessary allocated
memory within the RIME region and try memory allocation
again. It is notable that a contiguous physical region is only
necessary if the DIMM address space should be used for
RIME computation. In the case of using the DIMM for normal
memory purposes, the conventional allocation mechanism is
sufficient.

Address Mapping and Multi-DIMM Support. DRAM ad-
dress mappings may be interleaved at fine granularity across
channels to exploit further parallelism during block transfer. A
RIME DIMM does not allow for such address mapping (Sec-
tion V): assume two 1GB single-DIMM channels (RIME 0 and
RIME 1); the address space 0x00000000–0x3FFFFFFF
maps to RIME 0 and 0x40000000–0x7FFFFFFF maps
to RIME 1.5 Each rime min/rime max call is accompanied
by the starting/ending addresses of the target data range
as arguments (Figure 12). Therefore, all the chips within
each RIME DIMM are configured for the operational address
ranges. If the data spans more than one channels, the API
sends multiple such commands to the RIME DIMMs.

[248, 125, 16, 49, 105, 192, 14, 218] [122, 147, 11, 56, 87, 12, 21, 442]

ACTIVE CHIPS - 1(7)

[248, 125, 16, 49, 105, 192, 14, 218] [122, 147, 119, 56, 87, 12, 21, 442]

[248, 125, 16, 49, 105, 192, 14, 218] [122, 147, 119, 56, 87, 258, 21, 442]

ACTIVE CHIPS - 0

ACTIVE CHIPS - 0 ACTIVE CHIPS - 1(3)

ACTIVE CHIPS - 0 ACTIVE CHIPS - 1(5)

RIME 0 RIME 1

[248, 125, 16, 49, 105, 192, 5, 218] [122, 147, 11, 56, 87, 12, 21, 442]

i = 0

i = 1

i = 2

i = 3

Fig. 14. Example of sorting in case of data spread across multiple channels

Figure 14 shows an example two channel RIME system,
where each channel has 8 chips. Four iterations of the for-
loop in Figure 12 are shown. During the first iteration, software

5The bit location 230 is used to extract the DIMM address.

activates all the chips across all DIMMs to receive a single
min/max value from each chip.6 The library buffers these
values and performs a comparison in CPU to find the absolute
min/max value (circled in the figure). Next, only the chip that
had the minimum value in the previous iteration will be active,
which returns a new min/max value to replace the previous
one. For example, at i = 1, the chip in RIME 1 which earier
computed the minimum value of 5 needs to compute a new
minimum value This process will continue for 100 iterations
to find the 100 minimum values. The extra buffered values are
discarded when a new rime_init() is called for the same
address range/sub-range, and proceeding rime min/rime max
follow the same approach.

VI. EXPERIMENTAL SETUP

A. Architecture

Based on the prior work on ESESC [45], we develop a
QEMU-based cycle accurate simulator to model a multicore
out-of-order processor. For the baseline systems, we interface
the processor to cycle accurate components for an off-chip
main memory using DDR4 DRAM [36] and an eight-vault
HBM [37]. To realize the proposed API and software support,
we modify QEMU for an extended version of memkind
library [46] that enables special memory allocation and in-
memory ranking. Table I shows the simulation parameters.

TABLE I
SIMULATION PARAMETERS.

Core Type 64 4-issue cores, 2 GHz, 256 ROB entries

C
ac

he Instruction L1 32KB, direct-mapped, 64B block, hit/miss: 2/2
Data L1 32KB, 4-way, LRU, 64B block, hit/miss: 2/2, MESI

Shared L2 8MB, 16-way, LRU, 64B block, hit/miss: 15/12

H
B

M

Memory 2KB row buffer, 2GB DDR4-2000,
Configuration Channels/Ranks/Banks: 4/8/8

Timing tRCD:44, tCAS:44, tCCD:16, tWTR:31, tWR:4, tRTP:46, tBL:4,
(CPU cycles) tCWD:61, tRP:44, tRRD:16, tRAS:112, tRC:271, tFAW:181

M
ai

n

Memory 8KB row buffer, 8Gb DDR4-1600 chips,
Configuration Channels/Ranks/Banks: 4/2/8

Timing tRCD:44, tCAS:44, tCCD:16, tWTR:31, tWR:4, tRTP:46, tBL:10,
(CPU cycles) tCWD:61, tRP:44, tRRD:16, tRAS:112, tRC:271, tFAW:181

R
IM

E

Memory Channels/Chips/Banks/Subbanks: 1/8/64/64, 1Gb DDR4-1600
Configuration compatible chips, 512x512 SLC subarrays, die area: 20.54mm2

Timing and tRead: 4.3ns, tWrite: 54.2ns, tCompute: 282.5ns, vRead: 1V,
Power vWrite: 2V, vCompute: 1V, compute energy/chip: 51.3nJ

B. Circuits

We model the data array, sensing circuits, drivers, mat
controller, and interconnect elements using SPICE predictive
technology models [47] of NMOS and PMOS transistors
at 22nm. To estimate the area, delay, dynamic energy, and
leakage power of proposed memristive system, we perform
circuit simulations for the building blocks using Cadence
(SPECTRE) [48]. Then, we use the resistive memory pa-
rameters provided by the prior work [49] to evaluate the
read/write/compute voltages, area, delay, and energy of the
data arrays. All the additional gates, latches, and the con-
trol logic are synthesized using the Cadence Encounter RTL
Compiler [50] with FreePDK [51] at 45nm. The results are
then scaled down to a 22nm memory technology node. All

6The chip controller excludes this value from the range.

the SRAM units for the tables and data buffers at the chip
controller are evaluated using CACTI 6.5 [52]. To estimate
the system power/energy, we use the cycle-accurate simulator
in coordination with McPAT [53] for the processor die, Micron
power calculator [54] for the main memory, and prior work on
HBM memories [55] for the in-package memory architecture.

The overheads associated with the additional circuitry is
measured through modeling with CACTI 6.5 [52]. The match
vectors incur a 3% area overhead per mat. Including all addi-
tional latches, control logic, tree reduction and multiplexers,
each mat has an 8% area overhead and 5% die overhead.

C. Workloads

In addition to various sorting kernels (i.e., mergesort, quick-
sort, radixsort, and heapsort), we develop two versions of six
applications for execution on the proposed RIME architecture
and the conventional multicore CPU with in-package and off-
chip memory systems. All of the workloads are compiled with
GCC using the -O3 parameter for the MIPS64 ISA.

GroupBy. Scalar aggregate and GroupBy are two types of
aggregates often used to summarize a large set of records
for strategic decision making. In particular, GroupBy refers
to generating a set of groups for a given table7 [4], which is a
key operator for decision support systems, database, and big
data processing [56]. In GroupBy, the whole table is split into
several groups depending on a specific key. Then, functions
such as filtering, aggregation, and transformation are applied
within each group. Finally, the groups are merged or joined
to create a new table. Sorting is at the heart of modern large-
scale GroupBy functions [38]. We devise a key-value database
using quick sort (Q/S) for the GroupBy application to achieve
the highest throughput.

MergeJoin. Sort MergeJoin is a key operation in database
systems, which refers to combining records from several
tables. Numerous proposals have been made to accelerate
MergeJoin through parallelism [57] or FPGA accelerators [58].
For the key-value database, we devise a MergeJoin that sorts
two large tables to generate a new table that includes only
items that exist in both input tables.

Kruskal’s and Prim’s Algorithms. Minimum spanning tree
(MST) is a crucial concept in graph theory. It plays a key role
in a broad domain of applications, including vehicular ad-hoc
network (VANET) [59], multi-level Steiner tree [60], touring
problems, VLSI layout, network organization, and rail transit
network [61]. Kruskal’s and Prim’s algorithms are two main
tools for forming MST a given graph. In Kruskal’s algorithm,
all the graph edges are sorted from low weight to high. Then,
the graph edges are iteratively added to the output MST. Prim
starts from a vertex and iteratively finds a local vertex with
the minimum cost to include in the output MST.

Dijkstra’s Algorithm. It finds the shortest paths from a source
graph node to all other nodes. The algorithm needs data to be

7Whereas, in scalar aggregates, the whole table is grouped and a single
value is produced.

sorted first. This algorithm is very common in network routing
protocols [62–65]. We devise a program that iteratively finds
a vertex with the minimum distance from the source node.
The algorithm is similar to Prim’s algorithm. However, Prim
provides a minimum spanning tree, but Dijkstra prepares a
shortest path tree.

A*-Search Algorithm. A*-search is a smart algorithm for
path finding and graph traversal, which is commonly used for
finding the shortest path from one point to another in a graph
with multiple obstacles. The algorithm plays a significant
role in robotics, web-based maps, virtual reality systems,
geographic information system, and games [66–68]. We realize
a 2D binary matrix representing the obstacles with 0 and non-
obstacles with 1. The algorithm is then to find a path from the
source to a destination only through non-obstacle paths.

Strict Priority Queue. In the priority queue, data is arranged
in descending/ascending order based on their priority. Every
dequeue operation results in removing the minimum/maximum
entry of the queue based on their values. We use the heap
structure for the baseline priority queue application. Numerous
algorithms in network for routing and congestion management
are based on strict priority queue [69].

From the above workloads, Dijkstra’s, Kruskal’s, and Prim’s
algorithms work with IEEE-754 floating-point values, while
the rest of the workloads are of type integer. Note that if the
dataset uses fixed-point, it is processed by RIME in the fixed
point mode; if the dataset uses floating-point, it is processed
in the floating-point mode. No data conversion is required.

VII. EVALUATIONS

A. Performance

Sorting. Figure 15 shows the throughput of various sort
algorithms, in terms of million keys per second (MKps), using
RIME and the baseline systems when the data size varies
from 0.5-65M keys. RIME achieves a superior performance
over both the baselines for all the evaluated data sizes. As
compared with the off-chip baseline, the in-package memory
offers a higher memory bandwidth, which results in average
throughput gains of 2.4× (M/S), 2.3× (Q/S), 8.1× (R/S),
and 1.9× (H/S). In contrast, RIME lowers the bandwidth
complexity of sorting via in-situ computation, thereby gaining
30.2× (M/S), 12.4× (Q/S), 50.7× (R/S), and 26× (H/S)
average throughputs.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 0

 1
0

 2
0

 3
0

 4
0

 5
0

 6
0

 7
0

T
h

ro
u

g
h

p
u

t
(M

K
p

s
)

Data Size (Million Keys)

Off-Chip (DDR4)

M/S
Q/S

R/S
H/S

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 0

 1
0

 2
0

 3
0

 4
0

 5
0

 6
0

 7
0

Data Size (Million Keys)

In-Package (HBM)

M/S
Q/S

R/S
H/S

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 0

 1
0

 2
0

 3
0

 4
0

 5
0

 6
0

 7
0

Data Size (Million Keys)

RIME

Fig. 15. Throughput of the evaluated sorting algorithms.

Merging. GroupBy and MergeJoin heavily rely on sorting key-
value entries. As shown in Figure 16, for the range of evaluated

data sizes, the HBM implementation of GroupBy achieves
1.1− 2× better performance than off-chip DRAM. Whereas,
RIME improves performance by 5.4 − 23.1×. Similarly, the
HBM version of MergeJoin performs 1.1−2× better than the
off-chip DRAM baseline; while, RIME improves performance
by 5.6− 24.1×.

 0

 10

 20

 30

 40

 50

 60

 0

 1
0

 2
0

 3
0

 4
0

 5
0

 6
0

 7
0

T
h

ro
u

g
h

p
u

t
(M

K
p

s
)

Data Size (Million Keys)

GroupBy

Off-Chip
In-Package

RIME

 0

 10

 20

 30

 40

 50

 60

 0

 1
0

 2
0

 3
0

 4
0

 5
0

 6
0

 7
0

Data Size (Million Keys)

MergeJoin

Off-Chip
In-Package

RIME

Fig. 16. Throughput of merge and join algorithms for various sizes.

Ranking. Figure 17 shows the throughput of various algo-
rithms based on data ranking. RIME improves performance
significantly. For Kruskal, the HBM implementation achieves
2.8 − 3.7× of the off-chip performance; while, RIME gains
8.5 − 20.9×. Similarly for Dijkstra, the performance gains
over the off-chip baseline are 1.2 − 2.2× and 7.5 − 17.2×
for HBM and RIME, respectively. Such performance gains
for RIME are enabled due to the significant reduction in
memory bandwidth requirements. We observe similar trends
in Prim and A*-Search. The performance gains for Prim are
2− 4.4× and 6.3− 14.3× for the HBM and RIME systems.
As compared to the off-chip system, A*-Search on HBM
and RIME respectively achieve the 1 − 1.1× and 2.3 − 23×
performance of the off-chip DRAM baseline.

 0

 10

 20

 30

 40

 50

 60

 0

 1
0

 2
0

 3
0

 4
0

 5
0

 6
0

 7
0

T
h

ro
u

g
h

p
u

t
(M

K
p

s
) Kruskal

Off-Chip
In-Package

RIME

 0

 10

 20

 30

 40

 50

 60

 0

 1
0

 2
0

 3
0

 4
0

 5
0

 6
0

 7
0

Prim

Off-Chip
In-Package

RIME

 0

 10

 20

 30

 40

 50

 60

 0

 1
0

 2
0

 3
0

 4
0

 5
0

 6
0

 7
0

T
h

ro
u

g
h

p
u

t
(M

K
p

s
)

Data Size (Million Keys)

Dijkstra

Off-Chip
In-Package

RIME

 0

 10

 20

 30

 40

 50

 60

 0

 1
0

 2
0

 3
0

 4
0

 5
0

 6
0

 7
0

Data Size (Million Keys)

A*-Search

Off-Chip
In-Package

RIME

Fig. 17. Throughput of graph algorithms for various sizes.

Across all the evaluated applications, we found the perfor-
mance of ranking with RIME pretty insensitive to data size.
However, when executing an application, multiple ranking
operations may be carried out in between frequent RIME ini-
tialization and application phases that are sensitive to data size.
Therefore, we observe a stagnation in throughput of RIME as
data size increases for most of the evaluated workloads.

Strict Priority Queuing. We evaluate the strict priority queu-
ing using a packet processing workload, where two threads are

used for adding and removing packets to a buffer. On every
remove, a packet with the minimum key value is removed
from the queue. To model various loads and packet rates, we
assess performance for a range of initial buffer sizes (0.5-65M
packets) and various ratios of packet add to remove (i.e., R).
Figure 18 shows the throughput of removing packets from the
buffer for RIME and the baseline systems. We use a heap
structure for the baseline priority queues, which need heap
maintenance at both insert and remove operations. Therefore,
increasing the buffer size and add-to-remove ratio results in a
lower throughput for the baseline HBM and off-chip system. In
contrast, RIME achieves a constantly high throughput due to
using ordinary memory writes for adding packets to the queue
and low complexity accesses for removing packets from the
buffer. Across all the evaluated sizes and rate, RIME gains
6.1− 43.6× better performance than the both HBM and off-
chip baselines.

 0

 5

 10

 15

 20

 25

 30

 0

 1
0

 2
0

 3
0

 4
0

 5
0

 6
0

 7
0T

h
ro

u
g

h
p

u
t

(M
K

p
s

)

Data Size (Million Keys)

Off-Chip (DDR4)

R=1

R=2

R=3

R=4

R=5

 0

 5

 10

 15

 20

 25

 30

 0

 1
0

 2
0

 3
0

 4
0

 5
0

 6
0

 7
0

Data Size (Million Keys)

In-Package (HBM)

R=1

R=2

R=3

R=4

R=5

 0

 5

 10

 15

 20

 25

 30

 0

 1
0

 2
0

 3
0

 4
0

 5
0

 6
0

 7
0

Data Size (Million Keys)

RIME

R=1

R=2

R=3

R=4

R=5

Fig. 18. Throughput of strict priority queue for various packet rates and sizes.

B. Power and Energy

The proposed software library (V) for controlling RIME
DIMMs ensure a peak power of 1W for all the evaluated
applications. For system energy evaluation, we execute all
the evaluated workloads for 65M keys. Figure 19 shows the
system energy consumed by the HBM and RIME systems
normalized to the off-chip baseline. The HBM system con-
sumes an average of 24% more energy than off-chip for
A*-Search and Strict Priority Queues. This is mainly due
to (1) similar execution times of the two baselines and (2)
the additional static power consumed by the in-package and
off-chip memories in the HBM baseline. As for the other
applications, HBM can significantly reduce the execution time,
thereby decreasing the system energy by about 40%. RIME
achieves average energy reductions of 94% (Kruskal), 92%
(Dijkstra), 91% (Prim), 95% (GroupBy), 95% (MergeJoin),
94% (A*-Search), and 96% (Strict Priority Queuing).

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4

Kruskal

D
ijkstra

Prim
G
roupBy

M
ergeJoin

A*-Search

SPQ
 (R

=1)

SPQ
 (R

=2)

SPQ
 (R

=3)

SPQ
 (R

=4)

SPQ
 (R

=5)

R
e
la

ti
v
e
 E

n
e
rg

y

CPU
In-Package DRAM
Off-Chip DRAM

 0

 0.05

 0.1

 0.15

 0.2

Kruskal

D
ijkstra

Prim
G
roupBy

M
ergeJoin

A*-Search

SPQ
 (R

=1)

SPQ
 (R

=2)

SPQ
 (R

=3)

SPQ
 (R

=4)

SPQ
 (R

=5)

CPU
In-Package Memory
Off-Chip RRAM

Fig. 19. System energy for various applications (65M keys).

C. Lifetime

RRAM devices can endure a finite number of writes ranging
from 106 to 1012 [70–72]. We assess the impact of this finite
endurance on the lifetime of the proposed memristive system.
Notice that wear is only induced by writing to the memristive
arrays. Therefore, we need to track the number of writes
performed per memory locations during the execution of each
workload. Notably, unlike the conventional sort algorithms,
RIME does not require any data swap during the sort iterations.
Therefore, no additional writes to the memristive cells are
necessary during a RIME sort operation. Also, it is notable
that the initialization and exclusion are performed to the flag
bits implemented in CMOS latches. By tracking the total
number of writes per second carried out during the execution
of all applications, we first identify a block with the highest
write frequency. Then, we compute the lifetime assuming that
the most frequently written block keeps getting writes at the
same rate until it stops working. Based on this study for 108

writes, we expect at least 376 years lifetimes for the evaluated
applications.

VIII. RELATED WORK

Sorting with SIMD and GPU Accelerators. Software ap-
proaches have been proposed to exploit SIMD instructions
for utilizing data-level parallelism in sorting applications [11].
Inoue et al. [11] present a sorting algorithm based on a multi-
way Mergesort that reduces the cache misses through avoiding
random accesses for rearrangement of data. CloudRAMSort
performs large-scale distributed sorting by using SIMD and
multicore architectures [73]. Hou et al. [13] propose a seg-
mented sort mechanism for load balanced processing on GPUs
by combining or splitting data segments of different sizes.
Stehle et al. [16] propose a hybrid Radixsort that reduces
the amount of memory transfer in GPUs. Satish et al. [74]
present an implementation of Radixsort and Mergesort on
many-core GPUs by considering fine-grained parallelism and
minimal global communication. Several algorithms have been
devised to improve the performance of modern databases
using parallel multicore processing, SIMD instructions, GPUs,
and ASIC [75]. Albutiu et al. [57] develop a parallel sort-
merge algorithm to minimize the query response times in
databases. Chhugani et al. [15] present a multi-threaded SIMD
implementation of Mergesort based on the binary tree to
better utilize bandwidth . The existing software solutions rely
on improving performance through reducing data movement
between the processor and memory. However, they don’t solve
the fundamental issue, which is the need for accessing data
from memory. In contrast, RIME enables in-situ ranking with
no need to transfer data from memory to the processor.

Sorting with FPGA and ASIC Accelerators. Kobayashi
et al. [76] propose an FPGA-based sorting accelerator that
receives data from a host PC through PCIe bus and sends the
sorted data back. Bonsai [77] proposes an adaptive merge-tree
based sorting solution to optimize FPGA sorting performance
across all scales of data (MB to GB). Zhang et al. [78] develop

a CPU-FPGA heterogeneous platform for Mergesort. Casper
et al. [79] present a hardware design for selection, merge join,
and sorting for database applications. Specialized hardware
has been also considered for accelerating sort operations [14].
These solutions still require moving data from memory to
the accelerator prior to sorting. Whereas, RIME enables both
storing and sorting within the same memory arrays with no
need for moving data elements.

Ranking Accelerators. Numerous techniques have been pro-
posed in the literature to speedup median computation. Kumar
et al. [80] present a hardware implementation for computing
the median of 25 integers in three clock cycles at 394 Mhz.
Szanto et al. [81] propose a hierarchical histogram based
median filter in GPUs for parallel applications. Sindhu et
al. [82] design a comparator for fast sorting and ranking data.
Venkatappareddy et al. [83] propose a methodology to employ
the binary median filter for polynomial expressions. Lin et
al. [84] propose a 1D comparison-free bit-level median filter
by cascading different median units. Rupesh et al. [85, 86]
examine a data clustering accelerator based on in-situ me-
dian calculation in RRAM. Unlike the existing solutions, the
proposed memory system is capable of accelerating sort and
general ranking operations rather only finding the median.

In-Memory Processing. In the literature, numerous accelera-
tors have been proposed for in memory processing that aim at
reducing data movement between the processor and memory
through performing computation on the memory chips. Com-
putational RAM [87] builds a system, where SIMD pipelines
are placed next to the memory arrays for in-memory compu-
tation. A similar approach is proposed by Parallel PIM [88]
to perform SIMD operations in memory. Active Pages [89]
propose a microprocessor that includes additional logic circuit
in DRAM chips for in-memory computation. FlexRAM [90]
and intelligent RAM (IRAM) [91] are other examples for
in-memory processing that have been evaluated on different
technologies. However, RIME focuses on fast and efficient in-
memory ranking for a different class of applications.

IX. CONCLUSIONS

Large scale sorting is a fundamental operation for fu-
ture data intensive applications. This paper characterized the
bandwidth and throughput requirements of large-scale sorting
workloads and identified the primary reason for poor perfor-
mance of sorting. As an effective solution for the bandwidth
problem in sorting applications, we examined a novel memory
system capable of data ranking in memory. The proposed
architecture exhibits significant potentials for orders of mag-
nitude performance and energy-efficiency gains for the future
large scale data processing.

X. ACKNOWLEDGEMENT

The authors would like to thank the anonymous reviewers
for their useful feedback. This work was supported in part
by the National Science Foundation (NSF) under Grant CCF-
1755874.

REFERENCES

[1] N. Bell, S. Dalton, and L. N. Olson, “Exposing fine-grained parallelism
in algebraic multigrid methods,” SIAM Journal on Scientific Computing,
vol. 34, no. 4, pp. C123–C152, 2012.

[2] K. Zhang, K. Wang, Y. Yuan, L. Guo, R. Lee, and X. Zhang, “Mega-
kv: a case for gpus to maximize the throughput of in-memory key-value
stores,” Proceedings of the VLDB Endowment, vol. 8, no. 11, pp. 1226–
1237, 2015.

[3] P. Flick and S. Aluru, “Parallel distributed memory construction of suffix
and longest common prefix arrays,” in Proceedings of the International
Conference for High Performance Computing, Networking, Storage and
Analysis, pp. 1–10, 2015.

[4] D. Taniar, C. H. Leung, W. Rahayu, and S. Goel, High-performance
parallel database processing and grid databases, vol. 67. John Wiley
& Sons, 2008.

[5] E. Kovacs and I. Ignat, “Clustering with prototype entity selection
compared with k-means,” Journal of Control Engineering and Applied
Informatics, vol. 9, no. 1, pp. 11–18, 2007.

[6] V. Jugé, “Adaptive shivers sort: An alternative sorting algorithm,”
in Proceedings of the Fourteenth Annual ACM-SIAM Symposium on
Discrete Algorithms, pp. 1639–1654, SIAM, 2020.

[7] M. D. MacLaren, “Internal sorting by radix plus sifting,” Journal of the
ACM (JACM), vol. 13, no. 3, pp. 404–411, 1966.

[8] H. H. Goldstine, J. Von Neumann, and J. Von Neumann, “Planning and
coding of problems for an electronic computing instrument,” 1947.

[9] C. A. R. Hoare, “Algorithm 64: quicksort,” Communications of the ACM,
vol. 4, no. 7, p. 321, 1961.

[10] R. Bordawekar, D. Brand, M. Cho, B. R. Konigsburg, and R. Puri,
“Radix sort acceleration using custom asic,” May 24 2018. US Patent
App. 15/857,770.

[11] H. Inoue and K. Taura, “Simd-and cache-friendly algorithm for sorting
an array of structures,” Proceedings of the VLDB Endowment, vol. 8,
no. 11, pp. 1274–1285, 2015.

[12] N. Satish, C. Kim, J. Chhugani, A. D. Nguyen, V. W. Lee, D. Kim, and
P. Dubey, “Fast sort on cpus and gpus: a case for bandwidth oblivious
simd sort,” in Proceedings of the 2010 ACM SIGMOD International
Conference on Management of data, pp. 351–362, 2010.

[13] K. Hou, W. Liu, H. Wang, and W.-c. Feng, “Fast segmented sort on
gpus,” in Proceedings of the International Conference on Supercomput-
ing, pp. 1–10, 2017.

[14] S. Haas, S. Scholze, S. Höppner, A. Ungethüm, C. Mayr, R. Schüffny,
W. Lehner, and G. Fettweis, “Application-specific architectures for
energy-efficient database query processing and optimization,” Micropro-
cessors and Microsystems, vol. 55, pp. 119–130, 2017.

[15] J. Chhugani, A. D. Nguyen, V. W. Lee, W. Macy, M. Hagog, Y.-K.
Chen, A. Baransi, S. Kumar, and P. Dubey, “Efficient implementation of
sorting on multi-core simd cpu architecture,” Proceedings of the VLDB
Endowment, vol. 1, no. 2, pp. 1313–1324, 2008.

[16] E. Stehle and H.-A. Jacobsen, “A memory bandwidth-efficient hybrid
radix sort on gpus,” in Proceedings of the 2017 ACM International
Conference on Management of Data, pp. 417–432, 2017.

[17] T. Lahiri, M.-A. Neimat, and S. Folkman, “Oracle timesten: An in-
memory database for enterprise applications.,” IEEE Data Eng. Bull.,
vol. 36, no. 2, pp. 6–13, 2013.

[18] M. P. (Intel), An Intro to MCDRAM (High Band-
width Memory) on Knights Landing. Intel, January
2016. https://software.intel.com/en-us/blogs/2016/01/20/
an-intro-to-mcdram-high-bandwidth-memory-on-knights-landing.

[19] P. Behnam and M. N. Bojnordi, “Redcache: reduced dram caching,” in
2020 57th ACM/IEEE Design Automation Conference (DAC), pp. 1–6,
IEEE, 2020.

[20] H.-S. P. Wong, S. Raoux, S. Kim, J. Liang, J. P. Reifenberg, B. Ra-
jendran, M. Asheghi, and K. E. Goodson, “Phase change memory,”
Proceedings of the IEEE, vol. 98, no. 12, pp. 2201–2227, 2010.

[21] P. Behnam, A. P. Chowdhury, and M. N. Bojnordi, “R-cache: A highly
set-associative in-package cache using memristive arrays,” in 2018 IEEE
36th International Conference on Computer Design (ICCD), pp. 423–
430, IEEE, 2018.

[22] A. Sebastian, M. Le Gallo, R. Khaddam-Aljameh, and E. Eleftheriou,
“Memory devices and applications for in-memory computing,” Nature
Nanotechnology, pp. 1–16, 2020.

[23] M. N. Bojnordi and E. Ipek, “Memristive boltzmann machine: A
hardware accelerator for combinatorial optimization and deep learning,”

in 2016 IEEE International Symposium on High Performance Computer
Architecture (HPCA), pp. 1–13, IEEE, 2016.

[24] T. P. Xiao, C. H. Bennett, B. Feinberg, S. Agarwal, and M. J. Marinella,
“Analog architectures for neural network acceleration based on non-
volatile memory,” Applied Physics Reviews, vol. 7, no. 3, p. 031301,
2020.

[25] A. Pal Chowdhury, P. Kulkarni, and M. Nazm Bojnordi, “Mb-cnn:
memristive binary convolutional neural networks for embedded mobile
devices,” Journal of Low Power Electronics and Applications, vol. 8,
no. 4, p. 38, 2018.

[26] M. N. Bojnordi and E. Ipek, “The memristive boltzmann machines,”
IEEE Micro, vol. 37, no. 3, pp. 22–29, 2017.

[27] J. Ahn, S. Hong, S. Yoo, O. Mutlu, and K. Choi, “A scalable processing-
in-memory accelerator for parallel graph processing,” in Proceedings of
the 42nd Annual International Symposium on Computer Architecture,
pp. 105–117, 2015.

[28] G. Graefe, “Implementing sorting in database systems,” ACM Computing
Surveys (CSUR), vol. 38, no. 3, pp. 10–es, 2006.

[29] Z. Wang, L. Tian, D. Guo, and X. Jiang, “Optimization and analysis
of large scale data sorting algorithm based on hadoop,” arXiv preprint
arXiv:1506.00449, 2015.

[30] “sorting applications.” https://algs4.cs.princeton.edu/25applications/.
Accessed: 2020-03-12.

[31] L. Z. Xiang, “Research and improvement of pagerank sort algorithm
based on retrieval results,” in 2014 7th International Conference on In-
telligent Computation Technology and Automation, pp. 468–471, IEEE,
2014.

[32] C. Kim, S. Yoon, and D. Kim, “Fast sort of floating-point data for
data engineering,” Advances in Engineering Software, vol. 42, no. 1-2,
pp. 50–54, 2011.

[33] C. A. R. Hoare, “Algorithm 64: Quicksort,” Commun. ACM, vol. 4,
p. 321, July 1961.

[34] D. E. Knuth, The Art of Computer Programming, Volume 3: (2nd Ed.)
Sorting and Searching. USA: Addison Wesley Longman Publishing Co.,
Inc., 1998.

[35] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction
to algorithms. MIT press, 2009.

[36] “Jedec standard: Ddr4 sdram,” JEDEC Solid State Technology Associa-
tion, 2012.

[37] S. JEDEC, “High bandwidth memory (hbm) dram,” JESD235, 2013.
[38] H. Miao, M. Jeon, G. Pekhimenko, K. S. McKinley, and F. X. Lin,

“Streambox-hbm: Stream analytics on high bandwidth hybrid memory,”
in Proceedings of the Twenty-Fourth International Conference on Archi-
tectural Support for Programming Languages and Operating Systems,
pp. 167–181, 2019.

[39] M. Zangeneh and A. Joshi, “Design and optimization of nonvolatile
multibit 1t1r resistive ram,” IEEE Transactions on Very Large Scale
Integration (VLSI) Systems, vol. 22, no. 8, pp. 1815–1828, 2014.

[40] C. Xu, D. Niu, N. Muralimanohar, R. Balasubramonian, T. Zhang, S. Yu,
and Y. Xie, “Overcoming the challenges of crossbar resistive memory
architectures,” in 2015 IEEE 21st International Symposium on High
Performance Computer Architecture (HPCA), pp. 476–488, IEEE, 2015.

[41] P.-E. Danielsson, “Getting the median faster,” Computer Graphics and
Image Processing, vol. 17, no. 1, pp. 71–78, 1981.

[42] I. Hatirnaz, F. Gurkaynak, and Y. Leblebici, “Realization of a pro-
grammable rank-order filter architecture using capacitive threshold logic
gates,” in ISCAS’99. Proceedings of the 1999 IEEE International Sym-
posium on Circuits and Systems VLSI (Cat. No. 99CH36349), vol. 1,
pp. 435–438, IEEE, 1999.

[43] D. H. Yoon and F. Petrini, “Hourglass: A bandwidth-driven performance
model for sorting algorithms,” in Supercomputing (J. M. Kunkel, T. Lud-
wig, and H. W. Meuer, eds.), (Cham), pp. 93–108, Springer International
Publishing, 2014.

[44] “Ddr4 sdram registered dimm design specification,” JEDEC Solid State
Technology Association, 2014.

[45] E. K. Ardestani and J. Renau, “Esesc: A fast multicore simulator using
time-based sampling,” in 2013 IEEE 19th International Symposium on
High Performance Computer Architecture (HPCA), pp. 448–459, IEEE,
2013.

[46] “Memkind.”
[47] W. Zhao and Y. Cao, “New generation of predictive technology model

for sub-45nm design exploration,” in International Symposium on Qual-
ity Electronic Design, 2006.

[48] “Spectre circuit simulator.” http://www.cadence.com/products/cic/

https://software.intel.com/en-us/blogs/2016/01/20/an-intro-to-mcdram-high-bandwidth-memory-on-knights-landing
https://software.intel.com/en-us/blogs/2016/01/20/an-intro-to-mcdram-high-bandwidth-memory-on-knights-landing
https://algs4.cs.princeton.edu/25applications/
http://www.cadence.com/products/cic/spectre_circuit/pages/default.aspx

spectre circuit/pages/default.aspx.
[49] M. Wu, Y. Lin, W. Jang, C. Lin, and T. Tseng, “Low-power and highly

reliable multilevel operation in ZrO2 1t1r rram,” IEEE Electron Device
Letters, vol. 32, no. 8, pp. 1026–1028, 2011.

[50] “Encounter RTL compiler.” http://www.cadence.com/products/ld/rtl
compiler/.

[51] “Free PDK 45nm open-access based PDK for the 45nm technology
node.” http://www.eda.ncsu.edu/wiki/FreePDK.

[52] S. Wilton and N. Jouppi, “CACTI: An enhanced cache access and cycle
time model,” vol. 31, pp. 677–688, May 1996.

[53] S. Li, J. H. Ahn, R. D. Strong, J. B. Brockman, D. M. Tullsen, and
N. P. Jouppi, “McPAT: An integrated power, area, and timing modeling
framework for multicore and manycore architectures,” in International
Symposium on Computer Architecture, 2009.

[54] “Micron ddr4 power calculator.” https://www.micron.com/∼/media/
documents/products/power-calculator/ddr4 power calc.xlsm.

[55] M. O’Connor, N. Chatterjee, D. Lee, J. Wilson, A. Agrawal, S. W.
Keckler, and W. J. Dally, “Fine-grained dram: Energy-efficient dram
for extreme bandwidth systems,” in Proceedings of the 50th Annual
IEEE/ACM International Symposium on Microarchitecture, MICRO-50
’17, (New York, NY, USA), pp. 41–54, ACM, 2017.

[56] S. Chaudhuri and K. Shim, “Including group-by in query optimization,”
in VLDB, vol. 94, pp. 354–366, 1994.

[57] M.-C. Albutiu, A. Kemper, and T. Neumann, “Massively parallel sort-
merge joins in main memory multi-core database systems,” arXiv
preprint arXiv:1207.0145, 2012.

[58] M.-T. Xue, Q.-J. Xing, C. Feng, F. Yu, and Z.-G. Ma, “Fpga-accelerated
hash join operation for relational databases,” IEEE Transactions on
Circuits and Systems II: Express Briefs, 2019.

[59] J. J. Kponyo, Y. Kuang, E. Zhang, and K. Domenic, “Vanet cluster-
on-demand minimum spanning tree (mst) prim clustering algorithm,”
in 2013 International Conference on Computational Problem-Solving
(ICCP), pp. 101–104, IEEE, 2013.

[60] R. Ahmed, F. D. Sahneh, S. Kobourov, and R. Spence, “Kruskal-based
approximation algorithm for the multi-level steiner tree problem,” arXiv
preprint arXiv:2002.06421, 2020.

[61] T. Liang, H. Liu, and Y. Tan, “Research on the gravity planning model of
prefecture city rail transit network,” in E3S Web of Conferences, vol. 145,
p. 02005, EDP Sciences, 2020.

[62] B. Musznicki, M. Tomczak, and P. Zwierzykowski, “Dijkstra-based
localized multicast routing in wireless sensor networks,” in 2012 8th
International Symposium on Communication Systems, Networks & Dig-
ital Signal Processing (CSNDSP), pp. 1–6, IEEE, 2012.

[63] I. Koutsopoulos, E. Noutsi, and G. Iosifidis, “Dijkstra goes social:
Social-graph-assisted routing in next generation wireless networks,” in
European Wireless 2014; 20th European Wireless Conference, pp. 1–7,
VDE, 2014.

[64] F. Yue-zhen, L. Dun-min, W. Qing-chun, and J. Fa-chao, “An improved
dijkstra algorithm used on vehicle optimization route planning,” in 2010
2nd international conference on computer engineering and technology,
2010.

[65] C. Liu, Y. Li, W. Cheng, and G. Shi, “An improved multi-channel
aodv routing protocol based on dijkstra algorithm,” in 2019 14th IEEE
Conference on Industrial Electronics and Applications (ICIEA), pp. 547–
551, IEEE, 2019.

[66] S. Bandi and D. Thalmann, “The use of space discretization for au-
tonomous virtual humans (video session),” in Proceedings of the second
international conference on Autonomous agents, pp. 336–337, 1998.

[67] J. Yao, C. Lin, X. Xie, A. J. Wang, and C.-C. Hung, “Path planning
for virtual human motion using improved a* star algorithm,” in 2010
Seventh international conference on information technology: new gen-
erations, pp. 1154–1158, IEEE, 2010.

[68] B. M. ElHalawany, H. M. Abdel-Kader, A. TagEldeen, A. E. Elsayed,
and Z. B. Nossair, “Modified a* algorithm for safer mobile robot naviga-
tion,” in 2013 5th International Conference on Modelling, Identification
and Control (ICMIC), pp. 74–78, IEEE, 2013.

[69] D. Medhi and K. Ramasamy, Network routing: algorithms, protocols,
and architectures. Morgan Kaufmann, 2017.

[70] C. Cheng, A. Chin, and F. Yeh, “Novel ultra-low power rram with good
endurance and retention,” in VLSI Technology (VLSIT), 2010 Symposium
on, pp. 85–86, June 2010.

[71] H. Akinaga and H. Shima, “Resistive random access memory (reram)
based on metal oxides,” Proceedings of the IEEE, vol. 98, no. 12,
pp. 2237–2251, 2010.

[72] C.-W. Hsu, I.-T. Wang, C.-L. Lo, M.-C. Chiang, W.-Y. Jang, C.-H. Lin,
and T.-H. Hou, “Self-rectifying bipolar tao x/tio 2 rram with superior
endurance over 10 12 cycles for 3d high-density storage-class memory,”
in VLSI Technology (VLSIT), 2013 Symposium on, pp. T166–T167,
IEEE, 2013.

[73] C. Kim, J. Park, N. Satish, H. Lee, P. Dubey, and J. Chhugani,
“Cloudramsort: fast and efficient large-scale distributed ram sort on
shared-nothing cluster,” in Proceedings of the 2012 ACM SIGMOD
International Conference on Management of Data, pp. 841–850, 2012.

[74] N. Satish, M. Harris, and M. Garland, “Designing efficient sorting
algorithms for manycore gpus,” in 2009 IEEE International Symposium
on Parallel & Distributed Processing, pp. 1–10, IEEE, 2009.

[75] H. Zhang, G. Chen, B. C. Ooi, K.-L. Tan, and M. Zhang, “In-memory
big data management and processing: A survey,” IEEE Transactions on
Knowledge and Data Engineering, vol. 27, no. 7, pp. 1920–1948, 2015.

[76] R. Kobayashi and K. Kise, “A high performance fpga-based sorting
accelerator with a data compression mechanism,” IEICE Transactions
on Information and Systems, vol. 100, no. 5, pp. 1003–1015, 2017.

[77] N. Samardzic, W. Qiao, V. Aggarwal, M. F. Chang, and J. Cong, “Bon-
sai: High-performance adaptive merge tree sorting,” in 2020 ACM/IEEE
47th Annual International Symposium on Computer Architecture (ISCA),
pp. 282–294, 2020.

[78] C. Zhang, R. Chen, and V. Prasanna, “High throughput large scale sort-
ing on a cpu-fpga heterogeneous platform,” in 2016 IEEE International
Parallel and Distributed Processing Symposium Workshops (IPDPSW),
pp. 148–155, IEEE, 2016.

[79] J. Casper and K. Olukotun, “Hardware acceleration of database opera-
tions,” in Proceedings of the 2014 ACM/SIGDA international symposium
on Field-programmable gate arrays, pp. 151–160, 2014.

[80] V. Kumar, A. Asati, and A. Gupta, “Low-latency median filter core
for hardware implementation of 5× 5 median filtering,” IET Image
Processing, vol. 11, no. 10, pp. 927–934, 2017.

[81] P. Szántó and B. Fehér, “Hierarchical histogram-based median filter for
gpus,” Acta Polytechnica Hungarica, vol. 15, no. 2, 2018.

[82] E. Sindhu and K. Vasanth, “Vlsi architectures for 8 bit data comparators
for rank ordering image applications,” in 2019 International Conference
on Communication and Signal Processing (ICCSP), pp. 0087–0093,
IEEE, 2019.

[83] P. Venkatappareddy, B. Lall, C. Jayanth, K. Dinesh, and M. Deepthi,
“Novel methods for implementation of efficient median filter,” in 2017
14th IEEE India Council International Conference (INDICON), pp. 1–5,
IEEE, 2017.

[84] C. Lin, W.-T. Chen, Y.-C. Chou, and P.-Y. Chen, “A novel comparison-
free 1d median filter,” IEEE Transactions on Circuits and Systems II:
Express Briefs, 2019.

[85] Y. K. Rupesh, P. Behnam, G. R. Pandla, M. Miryala, and M. N. Bojnordi,
“Accelerating k-medians clustering using a novel 4t-4r rram cell,” IEEE
Transactions on Very Large Scale Integration (VLSI) Systems, vol. 26,
no. 12, pp. 2709–2722, 2018.

[86] Y. K. Rupesh and M. N. Bojnordi, “Large scale data clustering using
memristive k-median computation,” in 2017 26th International Con-
ference on Parallel Architectures and Compilation Techniques (PACT),
pp. 374–374, IEEE, 2017.

[87] D. G. Elliott, M. Stumm, W. M. Snelgrove, C. Cojocaru, and R. Mcken-
zie, “Computational ram: implementing processors in memory,” IEEE
Design Test of Computers, vol. 16, pp. 32–41, Jan 1999.

[88] M. Gokhale, B. Holmes, and K. Iobst, “Processing in memory: the
terasys massively parallel pim array,” Computer, vol. 28, pp. 23–31,
Apr 1995.

[89] M. Oskin, F. T. Chong, and T. Sherwood, “Active pages: a computation
model for intelligent memory,” in Proceedings. 25th Annual Inter-
national Symposium on Computer Architecture (Cat. No.98CB36235),
pp. 192–203, Jun 1998.

[90] Y. Kang, W. Huang, S. M. Yoo, D. Keen, Z. Ge, V. Lam, P. Pattnaik,
and J. Torrellas, “Flexram: Toward an advanced intelligent memory
system,” in 2012 IEEE 30th International Conference on Computer
Design (ICCD), pp. 5–14, Sept 2012.

[91] D. Patterson, T. Anderson, N. Cardwell, R. Fromm, K. Keeton,
C. Kozyrakis, R. Thomas, and K. Yelick, “A case for intelligent ram,”
IEEE Micro, vol. 17, pp. 34–44, Mar. 1997.

http://www.cadence.com/products/cic/spectre_circuit/pages/default.aspx
http://www.cadence.com/products/ld/rtl_compiler/
http://www.cadence.com/products/ld/rtl_compiler/
http://www.eda.ncsu.edu/wiki/FreePDK
https://www.micron.com/~/media/documents/products/power-calculator/ddr4_power_calc.xlsm
https://www.micron.com/~/media/documents/products/power-calculator/ddr4_power_calc.xlsm

	Introduction
	Background and Motivations
	Applications of Sorting
	Sorting Algorithms
	Design Challenges and Opportunities
	Memory Bandwidth Requirements
	Opportunities and Potentials

	Memristive Array Structure

	Design Overview
	In-Memory Min/Max Computation
	Unsigned Fixed-Point Numbers
	Signed Fixed-Point Numbers
	Floating-Point Numbers

	Rank/Sort/Merge Operation
	Sorting
	Ranking
	Merging

	Proposed Architecture
	Memristive In-Situ Ranking
	Bitwise Column Search
	Selective Row Exclusion

	Memory Organization
	Mat Architecture
	Chip Organization

	Software-Hardware Interface
	Experimental Setup
	Architecture
	Circuits
	Workloads

	Evaluations
	Performance
	Power and Energy
	Lifetime

	Related Work
	Conclusions
	Acknowledgement

